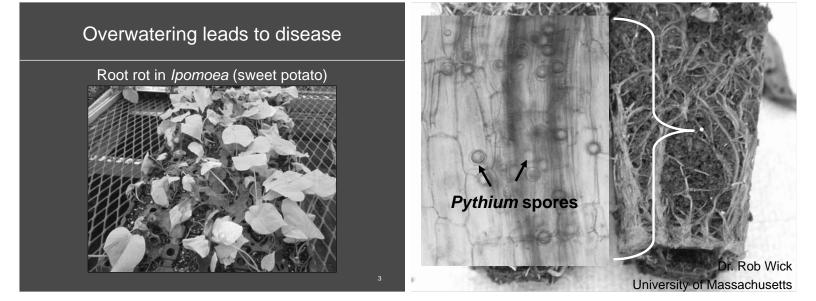
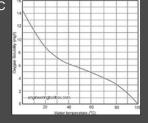
Managing water and oxygen for optimum rooting

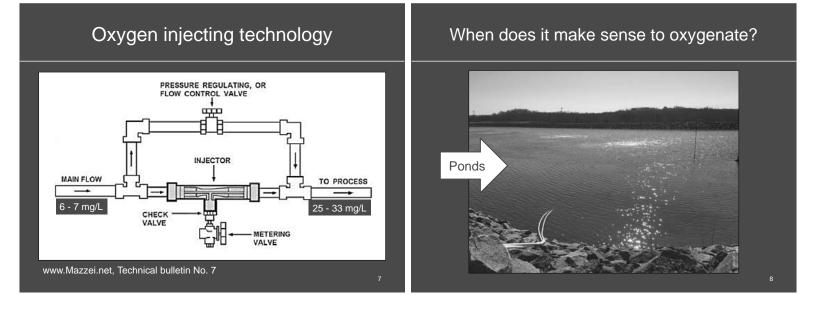

Erin Yafuso (Ph.D. Student) Environmental Horticulture Department University of Florida

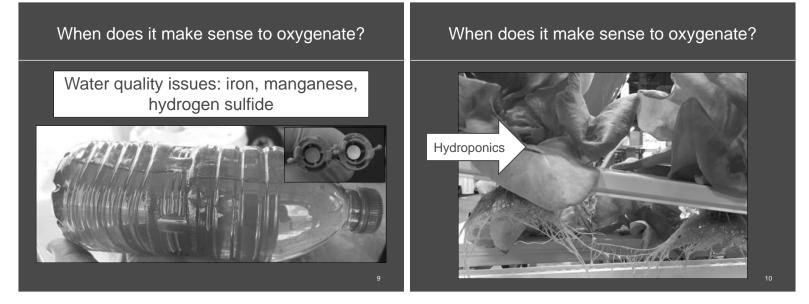
Oxygen supply to roots

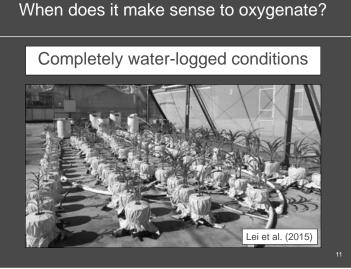
- Oxygen supply to roots is essential for root growth and plant health
- Root zone low oxygen (hypoxia) occurs at ≈ < 3 mg/L
 - Decrease metabolism and nutrient uptake
 - Root death
 - Wilting
- Low oxygen and high substrate moisture increases the risk of root pathogens

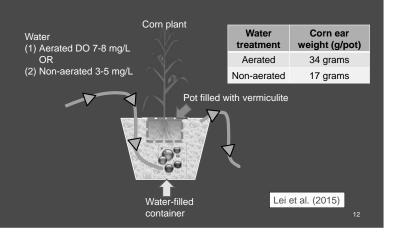
Overwatering delays rooting

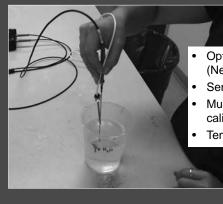

Scaevola


 A saturated substrate delays root growth after callus


Oxygen in air and water

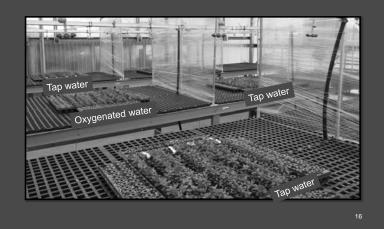

- Oxygen (O₂) is a gas present in the atmosphere at 271 mg/L at 1 atm & 25°C
- Dissolved oxygen (DO) is 8.3 mg/L at saturation at 1 atm & 25°C
- DO is less soluble at high temperature
- Oxygen diffuses 10,000 times more quickly through air than water

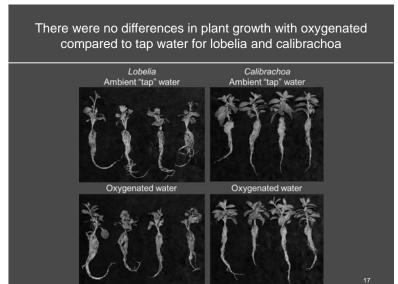



When does it make sense to oxygenate? Completely water-logged conditions

Oxygen injecting technology

Data collection: DO in solution


- Optical oxygen sensor (Neofox, Ocean Optics)
- Senses oxygen pressure
- Multi-point factory calibrated
- Temperature probe


We can super-saturate water, and DO levels stay very high for several hours at 75°F

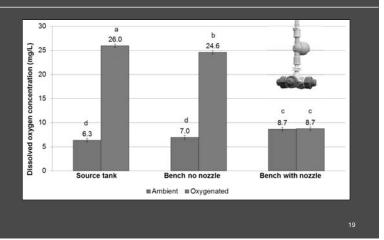
- Ambient tap water was not affected by time or water movement the average DO was 7.1 \pm 0.5 mg/L

Water Type	Water Movement	Initial Time	Final Time 4.5 hr.
Oxygenated	Non-stirred	28.3 mg/L	26.5 mg/L
Oxygenated	Stirred (100 gal / hr)	26.8 mg/L	16.9 mg/L (37% decrease)

Does oxygenation benefit plant propagation under mist?

DO was measured at different points in greenhouse irrigation

Source tank

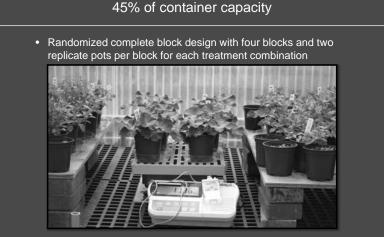


Bench no nozzle

Bench nozzle

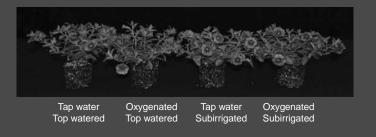
Oxygen off-gassed when super-saturated water passed through a mist nozzle

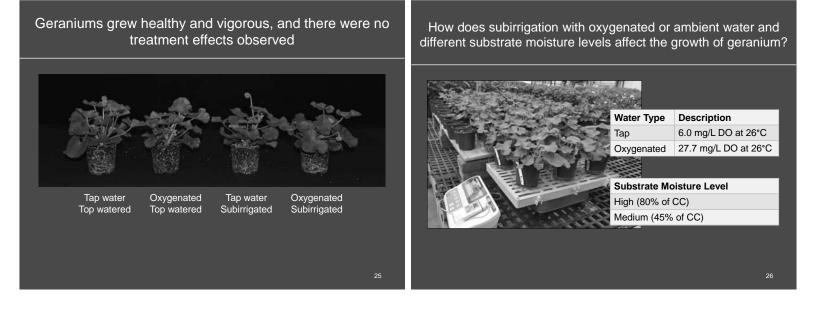
DO measured in irrigation water at a commercial operation was 98% of saturation after passing through a nozzle



Key findings

- Oxygenated water held in unpressurized containers remained super-saturated after a few hours
- There were no differences observed in root and plant growth for oxygenated water compared with ambient tap water during the propagation trial
- Water that passed through fine mist nozzles were brought to 100% DO saturation for oxygenated and tap water


What happens when we irrigate plants with oxygenated vs. ambient water without using a fine breaker


Level	Water Type	Description
1	Тар	6.0 mg/L DO at 26°C
2	Oxygenated	27.7 mg/L DO at 26°C
Level	Irrigation Delivery Method	
1	Top watered	
2	Subirrigated	
Level	Plant Species	
1	Calibrachoa x hybrid 'Aloha Kona Dark Red'	
2	Lobelia erinus 'Bella Aqua'	
3	Pelargonium x hortorum 'Patriot Red'	

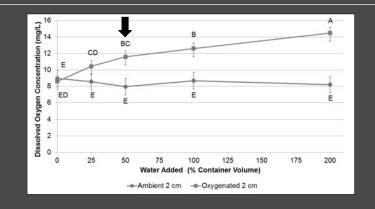
Plants were irrigated when the average of 6 pots dried to

There was an increase in root length and root dry mass for top watering compared to subirrigation for calibrachoa but no effect of oxygenation

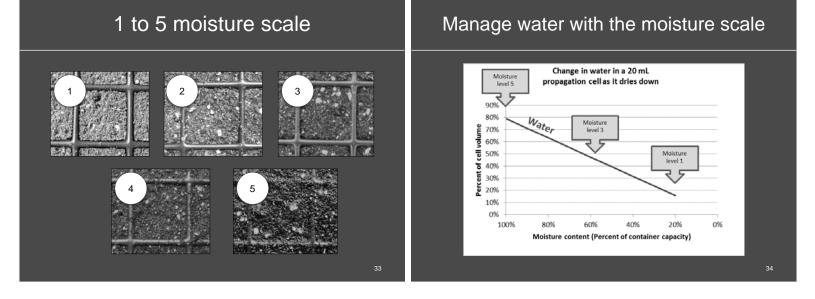
There was a slight increase in root length and root dry mass for high moisture compared to medium moisture level for geranium

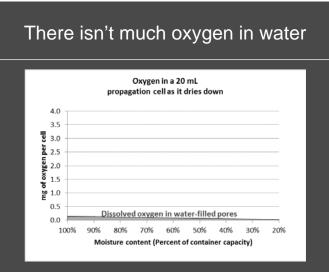
Medium moisture Medium moisture High moisture High moisture

Can you increase DO the growing substrate by irrigating with oxygenated water compared to ambient water?

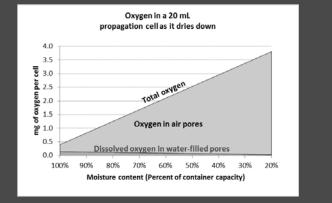

Water Type		Description			
Тар		7 mg/L DO at 24°C			
Oxygenated		29 mg/L DO at 24°C			
Percer contain volum	er	in r	dded to Pots nL (10-in ameter)	Water Added to Pots Percent of Contain Capacity (4-in diame	er
0			0	0	
25			106	44	
50			212	87	
100			425	175	
			850	350	

Measuring dissolved oxygen in substrate

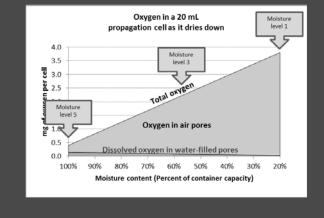

- Sub-irrigated & drained to container capacity
- Measured at 2 and 4-cm depth in substrate
 - Used a tooth pick to indent the substrate
 - Inserted the oxygen sensor
 - Equilibrated for 40 to 120 sec
 - Recorded temperature and DO

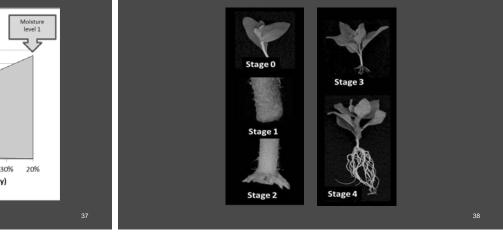


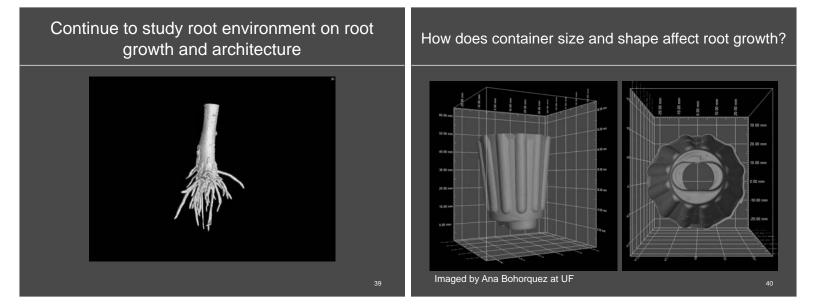
When a lot of oxygenated water was applied to pots the substrate-DO increased compared to ambient water



Conclusions	Conclusions
 Continued growth of transplants Irrigating with oxygenated water did not benefit plant growth of three bedding plants compared to tap water Treatment effects on plant growth were observed for calibrachoa, lobelia, and sub-group of geranium with medium and high substrate moisture level High porosity in peat-based substrate provided adequate oxygen to roots by air-filled pores (19% at container capacity for 4-in pots) 	 Continued growth of transplants Hypoxic growing conditions were not observed and therefore oxygenated water did not enhance or negatively affect plant growth Adding oxygenated water to an already saturated container substrate is not a recommended approach to irrigation management In container substrate, the supply of water and oxygen must be adequate to support plant growth demands Substrate with porosity Irrigation management by not overwatering
31	32







Water management is air management

Continue to study root environment on root growth and architecture

Acknowledgements

- Dr. Paul Fisher
- Dr. Freyre's Lab
- FNGLA Endowed Research Fund
- FRA

UNIVERSITY of FLORIDA

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE

Floriculture Research Alliance