Smart IPM – Data driven decisions

Ant Surrage

Fargro

Technical development specialist

Why IPM?

- Resistance to synthetic chemistry
- Legislation and societal pressure: e.g. SUD, Neonicotinoid restrictions, etc.
- Increased investment in development of alternative tech: biopesticides
- Loss of synthetic chemistry

Barriers to IPM adoption.

- Efficacy

Components tend not to be as effective as traditional chemistry.

- Predictability Many controls require specific conditions therefore can be inconsistent in their performance.
- Complexity IPM programmes are often more complex than previous programmes.

How can data help us get the best from an IPM programme?

Components of a Programme

One platform for horticulture data

Easy to use, deployable in minutes and scalable

J 26.9 °C 3000 onder 2	31.5 °C sensor 0013A2004153B46F	J 27.8 °C 3033 boven	30.7 °C sensor 0013A2004153B49B
J 29.5 °C sensor 0013A2004153B490	J 25.7 °C 3000 onder	30 °C 2033	J 23.4 °C 3033 boven
J 31.8 °C Sensor 0013A2004153B47A	J 26.2 °C 3033 boven	All 10 37.1 35.0 30.0 25.0 20.0	
		16.1 May 01 17:05 May 01 23:00 May 02 02:00 May 02	2 05:00 May 02 08:00 May 02 11:00 May 02 17:00

Timing

 Many IPM controls have a preventative MoA

 How can we use data to predict when to apply a control to get the best result?

Pest specific/Crop architecture

- Understand the pest lifecycle
- Understand where in the crop the pest will be
- Take into account the structure of the crop and how that can influence your application

A	В	C D
1	Fargro Technical 1 Temp/Humidity - Humidity (%) - averages	Fargro Technical 1 Temp/Humidity - Temperature (°C) - averages
2 24/08/2019 15:00	62.8	22.8
3 24/08/2019 16:00	63.2	23.1
4 24/08/2019 17:00	63.5	23.3
5 24/08/2019 18:00	63.5	23.2
6 24/08/2019 19:00	63.3	23.2
7 24/08/2019 20:00	63.7	23.1
8 24/08/2019 21:00	62.5	22.8
9 24/08/2019 22:00	61.3	22.5
10 24/08/2019 23:00	60.2	22.2
11 25/08/2019 00:00	60.1	22
12 25/08/2019 01:00	59.7	21.8
13 25/08/2019 02:00	59.2	21.8
14 25/08/2019 03:00	58.7	21.7
15 25/08/2019 04:00	58.2	21.5
16 25/08/2019 05:00	57.9	21.3
17 25/08/2019 06:00	57.6	21.1
18 25/08/2019 07:00	57.7	21.1
19 25/08/2019 08:00	58.2	21.4
20 25/08/2019 09:00	58.5	21.6
21 25/08/2019 10:00	59.2	21.8
22 25/08/2019 11:00	60.2	22.1
23 25/08/2019 12:00	61.2	22.5
24 25/08/2019 13:00	62.4	23
25 25/08/2019 14:00	63.3	23.4
26 DE /00 /2010 15:00	CA	12.0

Tunnel A	Egg	1st Instar Larva	2nd Instar Larva	Propupa	Pupa	Adult
Week 1	9	7	7	6	4	1
Week 2	7	9	5	5	3	1
Week 3	6	6	8	4	2	1
Week 4	4	4	4	8	6	6
Week 5	3	3	2	6	9	8
Week 6	4	4	2	2	9	9

Timing for disease control.

- Early detection of leaf wetness.
- Improve spread and reduce the cumulative hours at risk.
- Monitor plant stress
- Reduce unnecessary stress, or even increase low level stress.

AQ10

- *Ampelomyces quisqualis* is a hyper parasite
- Research last year by ADAS showed that if powdery mildew is not present AQ10s presences will be fleeting
- AQ10 should be applied at 5% Powdery Mildew
- However, if powdery mildew gets too advanced it can be equally difficult to control.
- Can we use predictive models to tell us level of risk/likelihood that 5% powdery mildew is present.

Powdery Mildew Development

- The latent and developmental periods are well defined for a range of powdery mildews.

- Triggers for the onset are less well defined

- However, it is widely thought that fluctuations in relation with low VWC can causes significant stress in spring and autumn that lead to onset.

Application

Naturalis – L *Beauveria bassiana*

- Above 60% RH
- Above 80% RH for sporulation
 - $20^{\circ}C 25^{\circ}C$
 - UV sensitive

Naturalis - L

Temperatures are consistently good for B.bassiana

Forecasting

Wed Aug 21 Thu Aug 22 Fri Aug 23 Sat Aug 24

Mon Aug 26

www.fargro.co.uk

Mon Aug 19

Naturalis - L

- Simple dashboard to inform growers
- Temperature/Humidity gauge to indicate best time for application
- Graphs to show conditions post application to inform the grower of the likelihood of *Beauveria bassiana* being present in the environment.

www.fargro.co.uk

Fargro Biopesticide Optimisation

New Metrics, new insight

"No Robots here" just data driven humans

Old strategy

New strategy using real-time charts & alerts

Predicting damping off disease & preventing

- T34 is active between 15°C 35°C
- Above 36°C mycelium will die
- Trichoderma's tend to work 20°C 30°C
- Requires "normal" VWC
- Not Anaerobic/or too dry

Oxygen in the root zone

pН

Try calculating this 1,440 times a day

no more painful excel and data collection time

VPD = VPsat - VPAIR

Actively reducing plant stress

Tot

•••

www.fargro.co.uk

Ask the Specialists!

Thank you for your time

Ant Surrage Technical development specialist Fargro

